Yihang Gao, Michael K. Ng, Mingjie Zhou. Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks, SIAM Journal on Mathematics of Data Science, 2023. paper
Yihang Gao, Xuelei Lin, Michael K. Ng. Blind Deconvolution for Multiple Observed Images with Missing Values, Pacific Journal of Optimization, 2023. paper
Yihang Gao and Michael K. Ng. Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks, Journal of Computational Physics, 2022. paper (arxiv)
Chuanyang Zheng*, Yihang Gao*, Han Shi, Minbin Huang, Jingyao Li, Jing Xiong, Xiaozhe Ren, Michael K. Ng, Xin Jiang, Zhenguo Li, Yu Li. DAPE: Data-Adaptive Positional Encoding for Length Extrapolation, Advances in Neural Information Processing Systems 2024 (NeurIPS 2024). (* indicates equal contribution) arxiv
Yihang Gao, Yiqi Gu, Michael K. Ng. Gradient Descent Finds the Global Optima of Two-Layer Physics-Informed Neural Networks, 40th International Conference on Machine Learning 2023 (ICML 2023). paper
Yihang Gao, Man-Chung Yue, Michael K. Ng. Approximate Secular Equations for the Cubic Regularization Subproblem, Advances in Neural Information Processing Systems 2022 (NeurIPS 2022). paper / poster / slides
Yihang Gao, Ka Chun Cheung, Michael K. Ng. SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition, IEEE Symposium Series on Computational Intelligence 2022 (IEEE SSCI 2022). paper (arxiv)