(* indicates equal contribution)
Yihang Gao, Michael K. Ng, Vincent Y. F. Tan. Low Tensor-Rank Adaptation of Kolmogorov–Arnold Networks, IEEE Transactions on Signal Processing, 2025+. paper
Yihang Gao, Vincent Y. F. Tan. On the Convergence of (Stochastic) Gradient Descent for Kolmogorov–Arnold Networks, IEEE Transactions on Information Theory, 2025+. paper
Yihang Gao*, Chuanyang Zheng*, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael Ng, Zhenguo Li, Zhaoqiang Liu. AlgoFormer: An Efficient Transformer Framework with Algorithmic Structures, Transactions on Machine Learning Research, 2025. paper
Yihang Gao, Michael K. Ng, Mingjie Zhou. Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks, SIAM Journal on Mathematics of Data Science, 2023. paper
Yihang Gao, Xuelei Lin, Michael K. Ng. Blind Deconvolution for Multiple Observed Images with Missing Values, Pacific Journal of Optimization, 2023. paper
Yihang Gao and Michael K. Ng. Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks, Journal of Computational Physics, 2022. paper (arxiv)
Guoxuan Chen and Han Shi and Jiawei Li and Yihang Gao and Xiaozhe Ren and Yimeng Chen and Xin Jiang and Zhenguo Li and Weiyang Liu and Chao Huang. SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator, 42nd International Conference on Machine Learning (ICML), 2025.
Chuanyang Zheng, Yihang Gao, Han Shi, Jing Xiong, Jiankai Sun, Jingyao Li, Minbin Huang, Xiaozhe Ren, Michael Ng, Xin Jiang, Zhenguo Li, Yu Li. DAPE V2: Process Attention Score as Feature Map for Length Extrapolation, The 63rd Annual Meeting of the Association for Computational Linguistics (ACL main), 2025.
Chuanyang Zheng*, Yihang Gao*, Han Shi, Minbin Huang, Jingyao Li, Jing Xiong, Xiaozhe Ren, Michael K. Ng, Xin Jiang, Zhenguo Li, Yu Li. DAPE: Data-Adaptive Positional Encoding for Length Extrapolation, Advances in Neural Information Processing Systems 2024 (NeurIPS 2024). arxiv
Yihang Gao, Yiqi Gu, Michael K. Ng. Gradient Descent Finds the Global Optima of Two-Layer Physics-Informed Neural Networks, 40th International Conference on Machine Learning 2023 (ICML 2023). paper
Yihang Gao, Man-Chung Yue, Michael K. Ng. Approximate Secular Equations for the Cubic Regularization Subproblem, Advances in Neural Information Processing Systems 2022 (NeurIPS 2022). paper / poster / slides
Yihang Gao, Ka Chun Cheung, Michael K. Ng. SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular Value Decomposition, IEEE Symposium Series on Computational Intelligence 2022 (IEEE SSCI 2022). paper (arxiv)